A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.
نویسندگان
چکیده
Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.
منابع مشابه
A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM
A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluor...
متن کاملGraphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media
A graphene oxide-terpyridine conjugate (GOTC) based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn...
متن کاملSensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer.
We introduce a sensitive, rapid, label-free and general fluorescent method for the determination of tartrazine by competitive binding to reduced graphene oxide (rGO) against fluorescein, and the fluorescence recovery upon fluorescein desorption from rGO provides a quantitative readout for tartrazine, giving a detection limit of 0.53 ng mL(-1).
متن کاملVisual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip.
Rapid and efficient measurement of cancer cells is a major challenge in early cancer diagnosis. In the present study, a miniature multiplex chip was created for in situ detection of cancer cells by implementing a novel graphene oxide (GO)-based Förster resonance energy transfer (FRET) biosensor strategy, i.e. assaying the cell-induced fluorescence recovery from the dye-labeled aptamer/graphene ...
متن کاملUpconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum.
A facile one-step approach was proposed to prepare hydrophilic and peptide-functionalized upconversion nanoparticles (UCNPs), which were used in the design of a biosensor for the sensitive and selective determination of human immunodeficiency virus antibodies in human serum based on FRET from the UCNPs to the graphene oxide.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 138 6 شماره
صفحات -
تاریخ انتشار 2013